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On Proof Realization of Intuitionistic Logic 

Sergei N. Artemov* 

Abstract 

In 1933 Gödel introduced an axiomatic system, currently known as S4, for a logic of 
an absolute provability, i.e. not depending on the formalism chosen ([7]). The problem 
of finding a fair provability model for S4 was left open. The famous formal provability 
predicate which first appeared in the Gödel Incompleteness Theorem does not do this job: 
the logic of formal provability is not compatible with S4. As was discovered in [2], this 
defect of the formal provability predicate can be bypassed by replacing hidden quantifiers 
over proofs by proof polynomials in a certain finite basis. The resulting Logic of Proofs 
enjoys a natural arithmetical semantics and provides an intended provability model for S4, 
thus answering a question left open by Gödel in 1933. Proof polynomials give an intended 
semantics for some other constructions based on the concept of provability, including 
intuitionistic logic with its Brouwer-Heyting- Kolmogorov interpretation, A-calculus and 
modal A-calculus. In the current paper we demonstrate how the intuitionistic propositional 
logic Xnt can be directly realized by proof polynomials. It is shown, that Xnt is complete 
with respect to this proof realizability. 

1    Introduction 

A functional completeness theorem from [2] (cf. Section 5 below) demonstrates, that three 
basic operations on proofs: ""{application), "+" (nondeterministic choice), and "!" (proof 
checker) constitute a basis for all absolute operations on proofs, expressible in the propositional 
language. Along with proof constants for proofs of certain "simple facts", like propositional 
tautologies, these three operations "•", "+", and "!" define so called proof polynomials. Logic 
of Proofs (CV) extends a boolean logic by new formulas [t]F, where t is a proof polynomial, 
and F a formula, with the intended reading "t is a proof of F" (cf. [2]). 

The language of CV has an exact intended semantics, where H is a proof of F" is inter- 
preted as a corresponding arithmetical formula about the codes of t and F. The completeness 
and decidability of CV was established in ([2]). 

The intuitionistic logic Xnt was supplied ([8], [9], cf.[14], [6], [15]) with an informal 
Brouwer-Heyting-Kolmogorov (BHK) operational semantics , which was given in terms of 
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logical conditions on the formulas and their proofs, e.g. the "implication" clause is "p proves 
A -4 B iff p is a construction transforming any proof c of A into a proof p(c) of B". In 1933 
Gödel made a step to formalize BHK semantics by introducing a faithful embedding of Xnt 
into a "natural born" provability logic 54; this attempt has remained incomplete, since, in 
turn, 54 has lacked the intended provability semantics. 

Xnt   4   54   4? 

As it was also established in [2], an immediate forgetful translation of CV gives exactly 54; 
in particular, there is a realization algorithm recovering proof polynomials in any 54-proof. 
So, CV provides an intended provability interpretation for the modal logic 54 

54   =-4   CV   <-4   Arithmetic, 

thus completing the Gödels embedding of Int into 54 to the fair arithmetical provability 
semantics for both Xnt and 54 

Int   ^4   54   «->   CV   ^4    Arithmetic. 

In the. current paper we give a direct realization algorithm of Xnt into CV, Gödel style. 
This proof readability provides a fair semantics for Xnt: 

Xnt \- F   &   F is proof realizable. 

2    Logic of Proofs 

The language of CV contains 

boolean constants T, _L, sentence variables po,.. .,pn,..., 
proof variables XQ,.. .,xn,..., proof constants ao,..., on,..., 
boolean connectives -4,..., 
functional symbols: monadic !, binary + and •, 
operator symbol of the type [term] (formula). 

Terms (alias proof polynomials) and formulas are defined in a natural way: a proof variable and 
an axiom constant is a term; a sentence variable and a boolean constant is a formula; whenever 
s, t are terms \t, (s + t), (s-t) are again terms, boolean connectives behave conventionally, and 
for t a term and F a formula ft}F is a formula. A term (proof polynomial) is ground if is 
does not contain variables. 

We will write st instead of s-t and skip parentheses when convenient. If x = (xi,..., xn) 
and T = (Ai,..., A„), then we will write [xj|r for [a:i]Ai,..., [xn]An. 



2.1 Definition.   System CV. The axioms are all formulas of the form 

AO. All classical tautologies in the language of CV 
Al. {tJF^F "reflexivity" 
A2. [t](F -4 G)  -¥ ([s\F -> ItsJG) "application" 
A3. \t\F ->  [!t][t]F "proof checker" 
A4. [s]F -*  ls+t}F,       [t]F ->  [s+t]F «choice" 

Rules of inference: 

' /or any formulas F, G, a set of formulas T 
T \- G ""modus ponens" 

\-F 
for any formula F, and any constant c 

c:F " necessitationn 

With any derivation D in CV we associate a Specification of Constants (SpeC) that is a 
list [ci]Ai,...,[cn]A„ of all formulas introduced in D by the necessitation rule. Under 
CVspeC r- F we mean "there is a derivation of F in CV with the specification SpeC". 

The intended understanding of CV is as a logic of operations on proofs, where [t]F stands 
for 

"t is a proof of F". 

For the usual Gödel proof predicate Proof (x, y) in VA there are primitive recursive functions 
from codes of proofs to codes of proofs corresponding to "•" and "!": "•" stands for a oper- 
ation on proof sequences which corresponds to the modus ponens rule, and "!" is a "proof 
checker" operation, appearing in the proof of the second Gödel Incompleteness theorem. The 
usual proof predicate has a natural nondeterministic version PROOF(x,y) called standard 
nondeterministic proof predicate 

"z is a code of a derivation containing a formula with a code y". 

PROOF already has all three operations of the /^-language: the operation s +1 is now just 
a concatenation of (nondeterministic) proofs s and t. 

A logic of the deterministic proof predicates is different from CV and is described in [1], 
[10]. 

2.2 Comment. System CV is not a multimodal logic, since no single modality [£](•) 
satisfies the property [t](p -><?)-*■ ([i]p -> lt}q) in CV. This makes CV different from 
numerous multimodal logics. However, the entire variety of labeled modalities in CV can 
emulate 54([2], cf. Theorem 3.4). 

2.3 Comment.   The usual deduction theorem holds for CV: 

T, A \-jr-p B    =>    T \-£<p A^B. 

3 



2.4 Lemma.   (Substitution lemma for CV).   If T(x,p) b-£p B{x,p) for a proposition^ 
varaiable p and a proof variable x, then for any proof polynomial t and any formula F 

T(x/t,p/F)\-cvB(x/t,p/F). 

Proof is trivial, since all axioms and rules of CV remain axioms and rules after a substitution. 

2.5 Lemma. The following rules are admissible in CV. Here A,B are CV-formulas, T, A 
are finite sets of CV-formulas, y is a proof variable, t, r are proof polynomials, y and 3 are 
vectors of proof variables and proof polynomials correspondingly, " h " means " \-£j> ". 

Necessitation: 

\-B 

for some ground t; 

Lifting: 

p]r,Ahfl 

p]I\ [y]A h lt(y)JB for some t(y); 

Stripping: 

r,gy!AhMB 
T,A\-B 

(y does not occur in the conclusion) 

pjr, jyJA H lt(y)}B 

Abstraction: PF h l\y.t(y)}(A -> B) 
for some proof polynomial denoted as Xy.t(y) 

(y does not occur in the conclusion.) 

Proof.     Necessitation is a special case of Lifting. 

Lifting. By induction on a proof of B from the premises [s|r, A. If B € [s|r, then 
p]r, [ylA V- [Is.15 for some s,- € 3.. If B e A, then fyjjB G fylA. for some y, G y. If B 
is an axiom AO - A4, then [c]B is SpeC. If B is from A5, i.e. B is \c\A for some A from 
AO - A4, then by A3, h \c\A-+ |[!c][c]A, and [sir, [y]A h [!c]5. Let B be obtained from 
C,C->B by modus ponens. Then, by the induction hypothesis, p]r, |[y]|A h pi(y)l(C->-B) 
and [sir, [ylA I- lt2{y)}C. for some polynomials tx and t2. By A2, [f|r, [y]|A h lti-t2}B 

Stripping. From T, [y]|A h [t]ß conclude T, [y]A h ß. Note that none of the variables 
from y = (yi,..., yn) occurs in T, A, ß. Define an operation ' on £"P-formulas: p = p' for a 



propositional variable p, ' commutes with boolean connectives and 

,     f F', if s contains a variable from y 
KlnF) = I [sj(pv)j   otherwise. 

By a straightforward induction on the derivation length show that for each F from the deriva- 

tion r, \jf\A h B 
f if T, ßfl A I- F then I\ A h F' 
\ if h F then h F'. 

In particular, T, A h JB. 

Case 1. F is from T, [y]A. Easy, since T' = T and ([y| A)' = A. 
Case 2. F is a propositional axiom. Then F' is the same axiom. 
Case 3. F=\s\X-*X. 

a) s is y-free. Then F' = IsjX'^X', an axiom Al. 
b) s is not y-free. Then F' = X'-*X'. 

Case 4. F = [«](X-»Y) -»• (lr}X->lsrY). 
a) s, r are both y-free. Then F' is again an axiom A2. 
b) s is y-free, r is not. Then F' = [sl{X'-*Y') -»• (X'-»Y'), axiom Al. 
c) r is y-free, s is not. Then F' = (X'-+Y') -» ([r]X'-»Y'), derivable in CV since 

d) s, r are both not y-free. Then F' = (X'-> Y') -» {X'-*Y'). 
Case5. F= [s]X-)-[!sl(|Is]X). 

a) s is y-free. Then F' is again an axiom A3. 
b) s is not y-free. Then F' = X'^X'. 

Case 6. F = [s]X  -»•  [(*+r)pf. 
a) s, r are both y-free. Then F' is again an axiom A4. 
b) s is y-free, r is not. Then F' = ls}X'-^X', axiom Al. 
c) s is not y-free. Then F' = X'-*X'. 

Case 7. F = p]|X -»•  [(s+r)]X. Similar to Case 6. 
Case 8. F is obtained from X, X -»• F by modus ponens. Then F' is obtained from 

G',X'-±X' by the same rule. 
Case 9. F = [s]X is obtained by necessitation from X. Then h X and h [c]X for some 

constant c. By the Induction hypothesis, h X'. By the necessitation, h [s]X'. 

Note that this proof delivers a linear time algorithm of transforming a derivation T, Iy|A h 
[t]B into a derivation T, A h ß. 

Abstraction. From p]I\ [y]A h [t(y)]B by Stripping, get p]r, Ah B, then by Deduction, 
p]|r h A^B, and then use Lifting to get [s|r I- [rJ(A->.B) for some proof polynomial r. 
< 

2.6 Comment. A polynomial t(y) introduced by the Lifting rule is nothing but a protocol 
of a proof of B from p]|r, [y|A. The same holds for the rule of Abstraction, where Ay.t(y) is 
a protocol of a proof of A-+B from p]r. 



The Stripping rule is the only rule in this list which does not introduce a proof polynomial. 
Also, the proof of this rule does not look constructive. However, since LV is decidable there is 
a (primitive recursive) procedure, which constructs a proof from the conclusion given a proof 
from the premise. A more direct algorithm could be extracted from a cut-elimination theorem 
for LV. 

The Abstraction rule might not look like an operation on proofs either, because in the 
the process of constructing Ay.i(y) from t(y) we get rid of the latter and seemingly construct 
Xy.t(y) from scratch. However, it is not the case. A polynomial t(y) is a protocol of a proof of 
B from p]r, lyJA. From this proof we get a proof p]r, Ah B, then a proof of A->B from 
pjr. Finally, \y.t(y) is a protocol of the latter proof. All the procedures from this chain of 
transformations leading from t(y) to Ayi(y) are constructive. 

3    Realization of <S4 by proof polynomials . 

3.1 Example.   SA f- (OAAOB) -> n(AAB). In LV this can be reproduced by the following: 

1. [c](A -► (B -> A AB)), by necessitation 
2. [x\A -»• [ex] (B -»• A AB), from 1 and A2 
3. [x]A -> {MB -»• l(cx)y}(AAB)), from 2 and A2 
4. {x}A A \y\B -»• \(cx)y\(AAB) from 3 by propositional logic. 

Here the specification of constants SpeC consist of 1 only. 

3.2 Example.     «S4 h (DAVüß) -»■ □(Av£). In LV the corresponding derivation is 

1. [a] (A -> AVß), by necessitation 
2. [6](B ->• AVB), by necessitation 
3. [a;JA -> [ax](AVß), from 1 and A2 
4. [y]B -f [6y](AVJ9), from 2 and A2 
5. [x]A ->• [aa;+6y](AVß), [y]ß -)■ {ax+byl(AvB) by A4 from 3, 4. 
6. [xJA V [y]B -»• lax+by}(A\/B), from 5 by propositional logic 

Here the specification of constants consists of 1 and 2. 

The fundamental fact about 54 is that, all «S4-theorems have a corresponding dynamic reading 
inLV. 

3.3 Definition.   By an LV-realization r = r(SpeC) of a modal formula F we mean 

1. an assignment of proof polynomials to all occurrences of the modality in F, 
2. a choice of a specification of constants SpeC; 



Under Fr we denote the image of F under a realization r. Positive and negative occurrences 
of modality in a formula and a sequent are defined in the usual way. A realization r is normal 
if all negative occurrences of □ are realized by proof variables. 

3.4 Theorem. ([2]) If SA h F, then CPspec r- Fr for some specification of constants SpeC 
and some normal realization r = r(SpeC). 

The proof describes an algorithm which for a given cut-free derivation T in <S4 assigns proof 
polynomials to all occurrences of the modality in T. 

3.5 Corollary. 
<S4 (- F   &■   CV r- Fr for some realization r. 

4    Arithmetical Semantics of proof polynomials 

We use a new functional symbol iz(p(z) for any arithmetical formula <p(z) and assume that 
t-terms could be eliminated in the usual way by using the small scope convention (cf. [5]). 
An arithmetical formula <p is provably Ai iff both <p and -><p are provably Ex. A term tz<p is 
provably recursive iff (f is provably Si. Closed recursive term is a provably total and provably 
recursive term izcp such that (p contains no free variables other than z. 

Close recursive terms represent all provably recursive names for natural numbers. 
We have to use all of them as proof realizers, since some operations on proofs, 
e.g. the proof checker "!", depend on the name of the argument, not on its value. 
Indeed, if PROOF(n,k) holds, then PROOF(n + 0,k) alsojiolds, !(n) is a proof 
of PROOF(n,k) and !(n + 0) is a proof of PROOF{n + 0, *). However, !(n) and 
!(n+0) deliver proofs of different formulas, thus, generally speaking, \(n) ^!(n+0). 

A proof predicate is a provably Ai-formula Prf(x,y) such that for all <p 

VA r- <p   «*•   for some n € u>     Prf(n, r(pn) holds. 

A proof predicate Prf(x,y) is normal if 
1) for every proof k the set T(k) = {I \ Prf(k, I)} is finite and the function 

T(Jb) = the code ofT{k) 

is provably recursive, 
2) for every finite set S of theorems of VA, S C T(k) for some proof k. 

The nondeterministic proof predicate PROOF (above) is a normal proof predicate. 



For every normal proof predicate Prf there are provably recursive terms m(x, y), a(x, y), 
c(x) such that for all closed recursive terms s, t and for all arithmetical formulas <p, $ the 
following formulas are valid: 

Prf(s,r<p^i>n) A Prf{t,r^)-+Prf(m(s,t),r^) 

Prf(s, r^)^Prf(a(s, t),r^),     Prf(t, r<p>) -> Prf(a(s, i), V) 

Prf(t,r^) -> Prf(c(rp),rPrf(t,'VH- 

Let SpeC be a specification of constants. An arithmetical SpeC-interpretation * of CV- 
language has the following parameters: SpeC, a normal proof predicate Prf, an evaluation of 
sentence letters by sentences of arithmetic, an evaluation of proof letters and axiom constants 
by closed recursive terms. We put T* = (0 = 0) and _L* = (0 = 1), * commute with 
boolean connectives, (t-s)* = ro(f,s*), (t + s)* = a(t*,s*), (It)* = c(rt^), ([t]F)* = 
Prf(t*, rF*n). We also assume, that VA r- G* for all G e SpeC. 

Under any SpeC-interpretation * a proof polynomial t becomes a closed recursive term t* 
(i.e. a recursive name of a natural number), and an jCP-formula F becomes an arithmetical 
sentence F*. In what follows "arithmetically SpeC-valid" means either "provable in VA" or 
"true in the standard modal" under any SpeC-interpretation. 

Note that the reflexivity principle is back, since ItjF-tF is provable in VA under 
any interpretation *. Indeed, let n be the value of t*. If Prf(n,rF*~') is true, 
then VA \~ F\ thus VA h Prf(n,rF*^) -> F*. If Prf(n,rF*^) is false, then 
VA h ^Prf(n, rF*n), and again VA h Prf(n, rF*n)-+F*. 

4.1 Theorem.     ([2], Arithmetical completeness of CV) 

CVspeC l~ F     <*•   F* is arithmetically SpeC-valid . 

Combining 3.4 and 4.1, we obtain the arithmetical completeness of <S4: 

<S4 h F    <=>•    Fr is arithmetically valid for some 
realization r and some specification of constants SpeC. 

Gödel in [7] defined a translation tr of intuitionistic formulas, into <S4-formulas where tr(F) 
is obtained from F by boxing all atoms and all implications in F. This Gödel translation is 
shown ([7], [11]) to provide a faithful embedding of Int into «S4. The proof interpretation of 
£7?_polynomials above provides a faithful proof arithmetical realization of Int: 

lnt\-F    &    [tr(F)]r  is arithmetically valid for some 
normal realization r and some specification of constants SpeC. 



5    Functional completeness of proof polynomials 

We recall a result from [2] that proof polynomials represent all absolute propositional opera- 
tions on proofs. The basic operations •,!, + thus play for proofs a role similar to that boolean 
connectives play for classical logic. 

Consider an arbitrary scheme of a specification of an operation of proofs in arithmetic. 
Such a specification is an arithmetical formula 

WeCBy "y is a proof of G{x)", 

or, equivalently 
Vx(C(£)  -)■ By "y is a proof of G{x)"), 

true in the standard model of arithmetic, where C and G are arbitrary arithmetical conditions. 
A propositional specification language should contain tools to express a notion "a; is a proof 
of F', at least for a proof variable x. Let SL be a language with 

boolean constants T, _L, sentence variables p0,..., p„,... 
proof variables xo,...,xn,... 
boolean connectives —>,... 
operator symbol [term] (formula). 

Note, that SL is a fragment of the language of CV where no functions are presupposed. The 
only proof terms in the specification language are the proof variables. Now we can make 
precise the following question: 

what absolute operations on proofs can be specified by a propositional language? 

To answer this question we assume that C(x) and G(x) are conditions in the specification 
language SL. Also, we express the existential quantifier 3y "y is a proof of G{x)n by the 
usual provability modality a, extending the definition of F* by one more item : (pF)* is 
3xPrf(x, rF*n), i.e. by the arithmetical provability predicate associated with a proof predicate 
Pr/from an interpretation *. 

Finally we restrict C"s to "positive" conditions, i.e. the ones where the outermost subfor- 
mulas [x]F occur positively. 

Indeed, a condition of the sort 

-.[a?] P -)■  O^lxjP, 

although valid for any proof predicate, may hardly be accepted as a specification 
of an operation on proofs equally as good as •,!, +, because it derives conclusions 
from negative information about proofs, i.e. from "x IS NOT a proof of a formula". 

It seems that now we have found a balanced definition of an operation on proofs. The regular 
case 

[siJCi A ... A [XnlCn -»• °G, 



which comes from the straightforward formalization of the notion of an admissible inference 
rule 

Ci,..., Cn 

G 

is covered. Further shrinking of C to conjunctions of formulas [xi]Ci A ... A |[a:n]Cn only 
would eliminate natural and useful nondeterministic proof systems. 

5.1 Definition. We may define now an absolute propositional operation on proofs as a 
formula C -)• □£?, valid under all arithmetical interpretations, where C, G are formulas in 
the specification language SL and C is positive. 

5.2 Comment. Operations •,!, + can be identified as absolute propositional operations on 
proofs. Indeed, formulas 

lx1}(F-^G)Alx2}F-+nG 
IxJF -»■ D[z] F 
[a?ijF V [x2]F -+OF 

are valid under every arithmetical translation and Skolem functions for the existential quan- 
tifiers on proofs in D's here can be realized by m(xi,X2),  c(x),  a(zi,£2) from Section 4 
correspondingly. 

The following theorem from ([2]) demonstrates that proof polynomials and Logic of Proofs 
suffice to realize any absolute propositional operation on proofs. 

5.3 Theorem. ([2]) For any abstract propositional operation on proofs C —>• OG there exists 
a proof polynomial t such that 

C -> \t\G 

is derivable in the Logic of Proofs, and thus arithmetically valid. 

6    Proof polynomials vs. Provability Logic. 

The Logic of Proofs gives a formalization of the arithmetical provability operator different 
from the one of the Provability Logic. In a certain sense, the Logic of Proofs introduces a new 
propositional language which is designed to get rid of the hidden quantifiers on proofs. The in- 
tended interpretation of a formula of the £7?-language gives a provably decidable arithmetical 
sentence, provided the evaluations of the propositions are. As a result, there is do direct way 
to interpret the Second Gödel Incompletness theorem into CV. The fixed point construction 
from [2] which establishes the arithmetical completeness of CV is totally different from the 
one used by R. Solovay in his proof of the arithmetical completeness of the Provability Logic 
(cf. [4]). However, the proof polynomials and the Provability Logic are clearly compatible; in 
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[1] in the proof of the arithmetical completeness of the system B it was shown how to build 
the arithmetical fixed point for the Logic of Proofs (without operations) in the top of the 
Solovay fixed point. 

A natural problem of combining proof polynomials with formal provability operator within 
one logical system was solved recently by Tanya Sidon in [13]. Along with usual proof poly- 
nomials her logic contains two more operations, which rise in connection with the modality 
for a formal provability. 

7 Proof polynomials vs. Modal Logic. 

By 3.4, the Logic of Proofs is a version of 54 presented in a more rich operational language, 
with no information being lost, since 54 is the the exact term-forgetting projection of CV. 
An easy inspection of the realizing algorithm shows that 

£7?-fomula   =   54-formula + its 54-proof. 

A transliretating of an 54-theorem into £7>-language may result in an exponential growth 
of its length. However, this increase looks much less dramatic if we calculate the complexity 
of the input <S4-theorem F in an "honest" way as the length of a proof of F in 54: the 
proof polynomials appearing in the realization algorithm have a size linear of the length of 
the proof, so, the total length of an £P-realization of an <S4-formula F is bounded by the 
quadratic function of the length of a given 54-proof of F. 

The decomposition of the 54-modality into a finitely generated set of proof polynomials is 
a general fact, which may be used in other applications of the modal logic. Similar dynamic 
decompositions of the modalities could be done for some other major modal logics: K, K4, 
S5, etc.. However, 54 is the one which corresponds to the provability reading of polynomials 
arising from this dynamic readings of the modalities. 

8 Proof polynomials vs. Intuitionistic logic. 

Kleene recursive realizability (cf. [14]) of the intuitionistic language does not use the logical 
provability constraints from the original BHK formulation and referes to all recursive func- 
tions, not just operations on proofs. As a result, too many formulas become realizable, more 
than Xnt can derive: 

Xnt   C    Kleene realizable formulas1. 

Proof realizability of Xnt can be defined as a superposition of the realizations of 54 in CV 
and CV in the arithmetic (above); Xnt turns out to be complete with respect to the proof 
realizability 

Xnt     =   proof realizable formulas. 

1 Unless a metatheory is restricted, cf. [12]. 
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In addition to the general algorithm of realization of <S4 in CV (3.4), we describe now its 
"light" version, which realizes Int in CV directly. 

We assume, that Int is presented in the language with {A, V, -¥, A.} and recall, that 
the Gödel translation of an Jnf-formula F into a <S4-formula tr(F) consists in prefixing all 
subformulas in F by D (we agree to skip □ prefixes of ±). Our realization algorithm extends 
this Gödel translation to /IP-formulas. 

We consider a cut-free sequential formulation of <S4, with sequents T => A, where T and 
A are multisets of modal formulas. Axioms are sequents of the form F =$> F, where F is a 
formula. Along with usual structural rules and rules introducing boolean connectives there 
are two proper modal rules 

(□=0  (=►□) 
DA,T => A and Dr =>• DA 

(A is a formula, I\ A - multisets of formulas, D{Ai,..., A„} = {DAi,..., DAn}). 

Step 1. Take a sequential cut-free derivation of F in Int with the axioms "p =>• p", where p is 
a prepositional letter, and "±=^ ". Replace every formula G in this derivation by its Gödel 
translation tr(G). The resulting tree T is an "almost" «S4-derivation of tr(F) with the axioms 
of the form "Dp =$> Op" with p a prepositional letter, and "-L=>> ". More precisely, every 
«S4-sequent in T is provable in <S4; moreover, each step down in T can be regarded as a cor- 
responding standard combination of 54-rules, excluding Cut. For example, the intuitionistic 
rule 

A,T^B   . . 
— (=►-►) 
r=^ A-±B 

will be presented as 
DA', or' =*• OB'  t 

ar'=^ DA'->DB' 
 (=>a). 
Dr' => D(DA'->Dß') 

Here under OF' we mean a Gödel translation of an intuitionistic formula F. Similarly, all other 
intuitionistic rules of the "introduction to the right", and only them, produce a combination 
of «S4-rules, which contains the rule (=>-D). Intuitionistic axiom sequents "p =$■ p" become 
axiom sequents "Dp=^Dp", axioms "_!_=£•    remain unchanged. 

All the following steps are an adoption of the general realizing algorithm of <S4 into CV 
for r. 

Occurrences of D in T are related if they occur in related formulas in premises and con- 
clusions of nodes in T; we extend this relationship by transitivity. All occurrences of D in T 
are now naturally split into disjoint families of related ones. Since polarities of the D's are 
respected in Twe may speak about negative and positive families of related D's. Two families 
are close if they contain D's from an axiom Dp =$• Dp. We call a positive family essential if 
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it contains at least one D introduced by the (=>• □) rule. In the tree T, essential G's appear 
only at the nodes, corresponding to the rules of introduction to the succedent. Since all G's at 
the axiom nodes of T correspond to the atomic formulas, there are no essential G's at leaves 
(axiom nodes). The basic observation here is that no negative family is close to an essential 
positive family. Indeed, every (=$■ D)-rule introduces a prefix G to a composite formula, not 
a sentence letter. 

Step 2. Realize each negative family and each nonessential positive family by a fresh proof 
variable, realize close families by the same proof variable. 

Step 3. For every essential positive family / enumerate all the nodes where the principal G 
has been introduced, and let nj be the total number of such nodes for a family /. Realize all 
G's in an essential positive family / by the polynomial 

(ui + ...+unf), 

where u,'s are fresh proof variables, which we call provisional variables. The resulting tree is 
called an evaluated tree. 

Step 4. Perform the following leaves-root procedure of replacing provisional variables by proof 
polynomials, which will result in the desired realization r. After this procedure passes a node 
and perform corresponding changes of the labeling sequent r =£> A, we will have 

ry-cvA.       (t) 

The case of an axiom node Op => Op in T, is trivial, since the corresponding /^-realization 
is [x]p =>■ \x\p for some proof variable x. 

At the nodes of the evaluated tree, corresponding to the introduction to the antecedent 
rules, we don't perform any substitutions. It is an easy exercise in a propositional logic to 
verify, that the property (f) is respected. 

A (=$■ —>■) node in the evaluated tree looks like 

, [fir =S> [s\B 

[f]r =► lh + ...+«,-+.. .+tnf}(ly}A -> [8\B) 

where «,• is a provisional variable, corresponding to this particular node.  By the induction 
hypothesis, 

MA, [fir hcv MB. 

By the Deduction rule for CV, 

[f]r \-cv ly}A -> fsjB, 
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and by Lifting, there exists a proof polynomial t(x) such that 

mr\-cvlt(x)myU^MB). 

Substitute everywhere in the tree t(x) for «,-. Since t(x) does not contain provisional variables, 
U{ is no longer present in the evaluated tree. By the substitution lemma the property (f) 
survives for all sequents in the tree. Clearly, 

\x\T \-CV lh + .. .+t+.. .+tnf}(ly}A -> MB). 

The remaining cases of (=*> A)-nodes and (=*► V)-nodes are treated similarly. After the 
process reaches the root, no provisional variables remain in the tree, the assignment of proof 
polynomials to the ü's in the root sequent is the desired realization of this sequent in CV. 

Since an Int-formula <p may be identified with the sequent =$■ ip, we may define a realizer 
of ip as a ground proof polynomial r realizing the sequent =>■ <p; the resulting evaluated tree 
will then have the root => {rjcp for some £P-formula (p. This r is a protocol of the derivation 
of =$> ip. 

The completeness theorem for proof realizations 

cp  is provable in Xnt   •«■   <p  is proof realizable 

follows now from the fairness of the embeddings 

Xnt   <->■   54   M-   CV   <-*   Arithmetic. 

8.1 Example.     The J«t-derivation 

A^A B=>B 

A =*• AVB _L=> J. B => AVB ±=>_L 

n(AVB),A=^i. -t(AVB)tB=>±. 

-.(AVB) =► ->A -.(AVB) =► ^B 

-i(AvB) =* -IAA-IB 

produces the following evaluated tree (we use t:F instead {t}F to simplify the picture): 

x:A=>x:A y:B=>y:B 

x:A => ui+U2:(x:AVy.B)    ±=M. y:B ^ ui-Hi2:(x:Ayy:B)    1=^1 

z:-iui+u2'-(x:AVy:B),x:A=> J. z:^u1+u2:(x:A\/y:B),y:B=> _L 

z:->ui+u,2:{x:AVy:B) =*■ v:->x:A z:->ui+a2:(x:AVy:B) =*■ w:->y:B 

z: -i«i+«2 = (*: A V j/: J3) =>■ p: (v: ->x: A Aw :-yy:B) 

14 
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Here ui,U2,v, w,p are provisional proof variables corresponding to all four essential positive 
families in the tree. According to the algorithm, all the provisional variables will be evaluated 
by polynomials rising from the lifting lemma used at the corresponding nodes. 

The variable u\ should be specified at the node labeled by the sequent 

\x\A =» [«i+u2l([x]AV[y]B). 

For that we apply Lifting to 

In this particular case it is easy to write down a polynomial for «i explicitly. Let a be a proof 
constant satisfying 

\-CV [a\({x\A -» (WAV|j/]JB)). 

Since also 
[z]Ar-£p[!z][z]A, 

we have 
lxlA=>la-lx\([x\AVly]B), 

and «i should be evaluated by a-\x. Similarly, u2 should be evaluated by b-\y, where b is a 
proof constant specified by the condition 

hcpM(Mfl->(MAvfo]fl)). 
To find a polynomial s(z) for v consider a node labeled by 

[z]-n[o!x+6!yl([x]AV|[y]ß) =► [v]-<[x]A. 

From its preceeding sequent we have 

[z]-[a!x+6!y](|[x]AV|[j/]ß), [x]A \-£v J_, 

by the deduction lemma, we get 

[z]-.[a!x+6!yl([x]AV[y]ß) h£v -,[x]A, 

and by Lifting, we get's(z) such that 

[z]-.[a!aH*!y]([xlAV[y]B) \-£p \8{z)\^\x\A. 

Similarly, we evaluate w by a polynomial r(z) such that 

lz^laMly[(lx\AV[j/lB) \~CV [r(z)]Hy]|£. 

Finally, the provisional variable p is evaluated by a polynomial t(z) such that 

[z]-.[a!aH*!y]([a!]AV|y]B) \-£V [t(z)l(H-MAA|Mh|[y]]B). 
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9    Proof polynomials vs. typed A-calculi. 

The rule of the A-abstraction can be realized as an admissible rule of inference in the Logic of 
Proofs (lemma 2.5). This shows a way to realize the entire types A-calculus in CP by emulating 
the formation rules for A-terms by the corresponding admissible rules in CV. This realization 
gives a direct arithmetical provability semantics for the types A-calculus. A straightforward 
combination of realization algorithms for the modal logic <S4 and for the types A-calculus gives 
a realization procedure for the modal A-calculus [3]. 
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